Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 2
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering ArchiMer
Rederstorff, Emilie; Weiss, Pierre; Sourice, S.; Pilet, P.; Xie, F.; Sinquin, Corinne; Colliec-jouault, Sylvia; Guicheux, Jerome; Laib, S..
Natural polysaccharides are attractive compounds with which to build scaffolds for bone and cartilage tissue engineering. Here we tested two non-standard ones, HE800 and GY785, for the two-dimensional (2-D) and three-dimensional (3-D) culture of osteoblasts (MC3T3-E1) and chondrocytes (C28/I2). These two glycosaminoglycan-like marine exopolysaccharides were incorporated into an injectable silylated hydroxypropylmethylcellulose-based hydrogel (Si-HPMC) that has already shown its suitability for bone and cartilage tissue engineering. Results showed that, similarly to hyaluronic acid (HA) (the control), HE800 and GY785 significantly improved the mechanical properties of the Si-HPMC hydrogel and induced the attachment of MC3T3-E1 and C28/I2 cells when these...
Tipo: Text Palavras-chave: Glycosaminoglycan; Hydrogel; Polysaccharide; Bone and cartilage tissue engineering; In vitro test.
Ano: 2011 URL: http://archimer.ifremer.fr/doc/00030/14090/15747.pdf
Imagem não selecionada

Imprime registro no formato completo
Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering ArchiMer
Rederstorff, E.; Rethore, G.; Weiss, P.; Sourice, S.; Beck-cormier, S.; Mathieu, E.; Maillasson, M.; Jacques, Y.; Colliec-jouault, Sylvia; Fellah, B. H.; Guicheux, J.; Vinatier, C..
The development of biologically and mechanically competent hydrogels is a prerequisite in cartilage engineering. We recently demonstrated that a marine exopolysaccharide, GY785, stimulates the in vitro chondrogenesis of adipose stromal cells. In the present study, we thus hypothesized that enriching our silated hydroxypropyl methylcellulose hydrogel (Si-HPMC) with GY785 might offer new prospects in the development of scaffolds for cartilage regeneration. The interaction properties of GY785 with growth factors was tested by surface plasmon resonance (SPR). The biocompatibility of Si-HPMC/GY785 towards rabbit articular chondrocytes (RACs) and its ability to maintain and recover a chondrocytic phenotype were then evaluated in vitro by MTS assay, cell counting...
Tipo: Text Palavras-chave: Cartilage; Hydrogel; Glycosaminoglycan; Marine polysaccharides; Chondrocytes; Tissue engineering.
Ano: 2017 URL: https://archimer.ifremer.fr/doc/00303/41449/40650.pdf
Registros recuperados: 2
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional